Stochastic Methods In Economics And Finance

Right here, we have countless book Stochastic Methods In Economics And Finance and collections to check out. We additionally present variant types and as a consequence type of the books to browse. The gratifying book, fiction, history, novel, scientific research, as competently as various additional sorts of books are readily manageable here.

As this Stochastic Methods In Economics And Finance, it ends stirring mammal one of the favored book Stochastic Methods In Economics And Finance collections that we have. This is why you remain in the best website to see the incredible books to have.

Stochastic Filtering with Applications in Finance
Stochastic Calculus of Variations in Mathematical Finance Paul Malliavin 2006-02-25 Highly esteemed author Topics covered are relevant and timely
Stochastic Optimization Models in Finance W. T. Ziemba 2014-05-12 Stochastic Optimization Models in Finance focuses on the applications of stochastic optimization models in finance, with emphasis on results and methods that can and have been utilized in the analysis of real financial problems. The discussions are organized around five themes: mathematical tools; qualitative economic results; static portfolio selection models; dynamic models that are reducible to static models; and dynamic models. This volume consists of five parts and begins with an overview of expected utility theory, followed by an analysis of convexity and the Kuhn-Tucker conditions. The reader is then introduced to dynamic programming; stochastic dominance; and measures of risk aversion. Subsequent chapters deal with separation theorems; existence and diversification of optimal portfolio policies; effects of taxes on risk taking; and two-period consumption models and portfolio revision. The book also describes models of optimal capital accumulation and portfolio selection. This monograph will be of value to mathematicians and economists as well as to those interested in economic theory and mathematical economics.
Stochastic Processes for Finance Stochastic Economic Dynamics Bjarne S. Jensen 2007 This book analyzes stochastic dynamic systems across a broad spectrum in economics and finance. The major unifying theme is the coherent and rigorous treatment of uncertainty and its implications for describing stochastic processes by the stochastic differential equations of the fundamental models in various fields. Pertinent subjects are interrelated, juxtaposed, and examined for consistency in theoretical and empirical contexts. The volume consists of three parts: Developments in Stochastic Dynamics; Stochastic Dynamics in Basic Economic Growth Models; and Intertemporal Optimization in Consumption, Finance, and Growth. Key topics include: fractional Brownian motion in finance; moment evolution of Gaussian and geometric Wiener diffusions; stochastic kinematics and stochastic mechanics; stochastic growth in continuous time; time delays and Hopf bifurcation; consumption and investment strategies; differential systems in finance and life insurance; uncertainty of technological innovations; investment and employment cycles; stochastic control theory; and risk aversion. The works collected in this book serves to bridge the "old" deterministic dynamics and the "new" stochastic dynamics. The collection is important for scholars...
This book presents a variety of computational methods used to solve dynamic problems in economics and finance. It emphasizes practical numerical methods rather than mathematical proofs and focuses on techniques that apply directly to economic analyses. The examples are drawn from a wide range of subspecialties of economics and finance, with particular emphasis on problems in agricultural and resource economics, macroeconomics, and finance. The book also provides an extensive Web-site library of computer utilities and demonstration programs. The book is divided into two parts. The first part develops basic numerical methods, including linear and nonlinear equation methods, complementarity methods, finite-dimensional optimization, numerical integration and differentiation, and function approximation. The second part presents methods for solving dynamic stochastic models in economics and finance, including dynamic programming, rational expectations, and arbitrage pricing models in discrete and continuous time. The book uses MATLAB to illustrate the algorithms and includes a utilities toolbox to help readers develop their own computational economics applications.

First published in 2004, this is a rigorous but user-friendly book on the application of stochastic control theory to economics. A distinctive feature of the book is that mathematical concepts are introduced in a language and terminology familiar to graduate students of economics. The standard topics of many mathematics, economics and finance books are illustrated with real examples documented in the economic literature. Moreover, the book emphasises the dos and don'ts of stochastic calculus, cautioning the reader that certain results and intuitions cherished by many economists do not extend to stochastic models. A special chapter (Chapter 5) is devoted to exploring various methods of finding a closed-form representation of the value function of a stochastic control problem, which is essential for ascertaining the optimal policy functions. The book also includes many practice exercises for the reader. Notes and suggested readings are provided at the end of each chapter for more references and possible extensions.

First published in 2004, this is a rigorous but user-friendly book on the application of stochastic control theory to economics. A distinctive feature of the book is that mathematical concepts are introduced in a language and terminology familiar to graduate students of economics. The standard topics of many mathematics, economics and finance books are illustrated with real examples documented in the economic literature. Moreover, the book emphasises the dos and don'ts of stochastic calculus, cautioning the reader that certain results and intuitions cherished by many economists do not extend to stochastic models. A special chapter (Chapter 5) is devoted to exploring various methods of finding a closed-form representation of the value function of a stochastic control problem, which is essential for ascertaining the optimal policy functions. The book also includes many practice exercises for the reader. Notes and suggested readings are provided at the end of each chapter for more references and possible extensions.

Stochastic Finance Nicolas Privault 2013-12-20

Stochastic Finance: An Introduction with Market Examples presents an introduction to pricing and hedging in discrete and continuous time financial models without friction, emphasizing the complementarity of analytical and probabilistic methods. It demonstrates both the power and limitations of mathematical models in finance, covering the basics of finance and stochastic calculus, and builds up to special topics, such as options, derivatives, and credit default and jump processes. It details the techniques required to model the time evolution of risky assets. The book discusses a wide range of classical topics including Black–Scholes pricing, exotic and American options, term structure modeling and change of numéraire, as well as models with jumps. The author takes the approach adopted by mainstream mathematical finance in which the computation of fair prices is based on the absence of arbitrage hypothesis, therefore excluding riskless profit based on arbitrage opportunities and basic (buying low/selling high) trading. With 104 figures and simulations, along with about 20 examples based on actual market data, the book is targeted at the advanced undergraduate and graduate level, either as a course text or for self-study, in applied mathematics, financial engineering, and economics.

Methods of Mathematical Finance Ioannis Karatzas 2017-01-10

This sequel to Brownian Motion and Stochastic Calculus by the same
authors develops contingent claim pricing and optimal consumption/investment in both complete and incomplete markets, within the context of Brownian-motion-driven asset prices. The latter topic is extended to a study of equilibrium, providing conditions for existence and uniqueness of market prices which support trading by several heterogeneous agents. Although much of the incomplete-market material is available in research papers, these topics are treated for the first time in a unified manner. The book contains an extensive set of references and notes describing the field, including topics not treated in the book. This book will be of interest to researchers wishing to see advanced mathematics applied to finance. The material on optimal consumption and investment, leading to equilibrium, is addressed to the theoretical finance community. The chapters on contingent claim valuation present techniques of practical importance, especially for pricing exotic options.

Stochastic Methods in Economics and Finance A.G. Malliaris 1982 Theory and application of a variety of mathematical techniques in economics are presented in this volume. Topics discussed include: martingale methods, stochastic processes, optimal stopping, the modeling of uncertainty using a Wiener process, Itô's Lemma as a tool of stochastic calculus, and basic facts about stochastic differential equations. The notion of stochastic ability and the methods of stochastic control are discussed, and their use in economic theory and finance is illustrated with numerous applications. The applications covered include: futures, pricing, job search, stochastic capital theory, stochastic economic growth, the rational expectations hypothesis, a stochastic macroeconomic model, competitive firm under price uncertainty, the Black-Scholes option pricing theory, optimum consumption and portfolio rules, demand for index bonds, term structure of interest rates, the market risk adjustment in project valuation, demand for cash balances and an asset pricing model.

Mathematical Modeling in Economics and Finance: Probability, Stochastic Processes, and Differential Equations Steven R. Dunbar 2019-04-03 Mathematical Modeling in Economics and Finance is designed as a textbook for an upper-division course on modeling in the economic sciences. The emphasis throughout is on the modeling process including post-modeling analysis and criticism. It is a textbook on modeling that happens to focus on financial instruments for the management of economic risk. The book combines a study of mathematical modeling with exposure to the tools of probability theory, difference and differential equations, numerical simulation, data analysis, and mathematical analysis. Students taking a course from Mathematical Modeling in Economics and Finance will come to understand some basic stochastic processes and the solutions to stochastic differential equations. They will understand how to use those tools to model the management of financial risk. They will gain a deep appreciation for the modeling process and learn methods of testing and evaluation driven by data. The reader of this book will be successfully positioned for an entry-level position in the financial services industry or for beginning graduate study in finance, economics, or actuarial science. The exposition in Mathematical Modeling in Economics and Finance is crystal clear and very student-friendly. The many exercises are extremely well designed. Steven Dunbar is Professor Emeritus of Mathematics at the University of Nebraska and he has won both university-wide and MAA prizes for extraordinary teaching. Dunbar served as Director of the MAA's American Mathematics Competitions from 2004 until 2015. His ability to communicate mathematics is on full display in this approachable, innovative text.

Stochastic Processes and Calculus Uwe Hassler 2015-12-12 This textbook gives a comprehensive introduction to stochastic processes and calculus in
the fields of finance and economics, more specifically mathematical finance and time series econometrics. Over the past decades stochastic calculus and processes have gained great importance, because they play a decisive role in the modeling of financial markets and as a basis for modern time series econometrics. Mathematical theory is applied to solve stochastic differential equations and to derive limiting results for statistical inference on nonstationary processes. This introduction is elementary and rigorous at the same time. On the one hand it gives a basic and illustrative presentation of the relevant topics without using many technical derivations. On the other hand many of the procedures are presented at a technically advanced level: for a thorough understanding, they are to be proven. In order to meet both requirements jointly, the present book is equipped with a lot of challenging problems at the end of each chapter as well as with the corresponding detailed solutions. Thus the virtual text - augmented with more than 60 basic examples and 40 illustrative figures - is rather easy to read while a part of the technical arguments is transferred to the exercise problems and their solutions.

Time Series in Economics and Finance

Tomas Cipra 2021-09-01 This book presents the principles and methods for the practical analysis and prediction of economic and financial time series. It covers decomposition methods, autocorrelation methods for univariate time series, volatility and duration modeling for financial time series, and multivariate time series methods, such as cointegration and recursive state space modeling. It also includes numerous practical examples to demonstrate the theory using real-world data, as well as exercises at the end of each chapter to aid understanding. This book serves as a reference text for researchers, students and practitioners interested in time series, and can also be used for university courses on econometrics or computational finance.

Introduction to Stochastic Calculus for Finance

Dieter Sondermann 2006-12-02 Although there are many textbooks on stochastic calculus applied to finance, this volume earns its place with a pedagogical approach. The text presents a quick (but by no means "dirty") road to the tools required for advanced finance in continuous time, including option pricing by martingale methods, term structure models in a HJM-framework and the Libor market model. The reader should be familiar with elementary real analysis and basic probability theory.

Continuous-time Stochastic Control and Optimization with Financial Applications

Huyên Pham 2009-05-28 Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.

Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications

Łukasz Delong 2013-06-12 Backward stochastic differential equations with jumps can be used to solve problems in both finance and insurance. Part I of this book presents the theory of BSDEs with
Lipschitz generators driven by a Brownian motion and a compensated random measure, with an emphasis on those generated by step processes and Lévy processes. It discusses key results and techniques (including numerical algorithms) for BSDEs with jumps and studies filtration-consistent nonlinear expectations and g-expectations. Part I also focuses on the mathematical tools and proofs which are crucial for understanding the theory. Part II investigates actuarial and financial applications of BSDEs with jumps. It considers a general financial and insurance model and deals with pricing and hedging of insurance equity-linked claims and asset-liability management problems. It additionally investigates perfect hedging, superhedging, quadratic optimization, utility maximization, indifference pricing, ambiguity risk minimization, no-good-deal pricing and dynamic risk measures. Part III presents some other useful classes of BSDEs and their applications. This book will make BSDEs more accessible to those who are interested in applying these equations to actuarial and financial problems. It will be beneficial to students and researchers in mathematical finance, risk measures, portfolio optimization as well as actuarial practitioners.

Applied Stochastic Models and Control for Finance and Insurance Charles S. Tapiero 2012-12-06 Applied Stochastic Models and Control for Finance and Insurance presents at an introductory level some essential stochastic models applied in economics, finance and insurance. Markov chains, random walks, stochastic differential equations and other stochastic processes are used throughout the book and systematically applied to economic and financial applications. In addition, a dynamic programming framework is used to deal with some basic optimization problems. The book begins by introducing problems of economics, finance and insurance which involve time, uncertainty and risk. A number of cases are treated in detail, spanning risk management, volatility, memory, the time structure of preferences, interest rates and yields, etc. The second and third chapters provide an introduction to stochastic models and their application. Stochastic differential equations and stochastic calculus are presented in an intuitive manner, and numerous applications and exercises are used to facilitate their understanding and their use in Chapter 3. A number of other processes which are increasingly used in finance and insurance are introduced in Chapter 4. In the fifth chapter, ARCH and GARCH models are presented and their application to modeling volatility is emphasized. An outline of decision-making procedures is presented in Chapter 6. Furthermore, we also introduce the essentials of stochastic dynamic programming and control, and provide first steps for the student who seeks to apply these techniques. Finally, in Chapter 7, numerical techniques and approximations to stochastic processes are examined. This book can be used in business, economics, financial engineering and decision sciences schools for second year Master's students, as well as in a number of courses widely given in departments of statistics, systems and decision sciences.

Elementary Stochastic Calculus, with Finance in View Thomas Mikosch 1998-10-30 Modelling with the Itô integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This book is suitable for the reader without a
deep mathematical background. It gives an elementary introduction to
that area of probability theory, without burdening the reader with a
great deal of measure theory. Applications are taken from
stochastic finance. In particular, the Black-Scholes option pricing
formula is derived. The book can serve as a text for a course on
stochastic calculus for non-mathematicians or as elementary
reading material for anyone who wants to learn about Itô calculus and/or
stochastic finance.

Stochastic Optimization Methods in Finance and Energy
Marida Bertocchi
2011-09-15
This volume presents a collection of contributions dedicated
to applied problems in the financial and energy sectors that have been
formulated and solved in a stochastic optimization framework. The invited
authors represent a group of scientists and practitioners, who have cooperated in recent years to
facilitate the growing penetration of stochastic programming techniques in
real-world applications, inducing a significant advance over a large
spectrum of complex decision problems. After the recent widespread
liberalization of the energy sector in Europe and the unprecedented
growth of energy prices in international commodity markets, we have witnessed a significant
convergence of strategic decision problems in the energy and financial
sectors. This has often resulted in common open issues and has induced a
remarkable effort by the industrial and scientific communities to
facilitate the adoption of advanced analytical and decision tools. The main concerns of the financial
community over the last decade have suddenly penetrated the energy sector
inducing a remarkable scientific and practical effort to address
previously unforeseeable management problems. Stochastic Optimization
Strategies aims to include in a unified framework for the first time
an extensive set of contributions related to real-world applied
problems in finance and energy, leading to a common methodological
approach and in many cases having similar underlying economic and
financial implications. Part 1 of the book presents 6 chapters related to
financial applications; Part 2 presents 7 chapters on energy
applications; and Part 3 presents 5 chapters devoted to specific
theoretical and computational issues.

Derivative Security Pricing
Carl Chiarella
2015-03-25
The book presents applications of stochastic calculus to derivative security
pricing and interest rate modelling. By focusing more on the financial
intuition of the applications rather than the mathematical formalities,
the book provides the essential knowledge and understanding of
fundamental concepts of stochastic finance, and how to implement them to
develop pricing models for derivatives as well as to model spot and forward interest rates.
Furthermore an extensive overview of
the associated literature is presented and its relevance and
applicability are discussed. Most of the key concepts are covered
including Ito’s Lemma, martingales, Girsanov’s theorem, Brownian motion,
jump processes, stochastic volatility, American feature and
binomial trees. The book is beneficial to higher-degree research
students, academics and practitioners as it provides the elementary
theoretical tools to apply the techniques of stochastic finance in
research or industrial problems in the field.

Stochastic Processes
Wolfgang Runggaldier 1992

Stochastic Optimization and Economic Models
Jati Sengupta
2013-03-09
This book presents the main applied
aspects of stochastic optimization in economic models. Stochastic
processes and control theory are used under optimization to illustrate the
various economic implications of optimal decision rules. Unlike
econometrics which deals with estimation, this book emphasizes the
decision-theoretic basis of uncertainty specified by the
stochastic point of view. Methods of applied stochastic control using
stochastic processes have now reached an exciting phase, where several disciplines like systems engineering, operations research and natural resources interact along with the conventional fields such as mathematical economics, finance and control systems. Our objective is to present a critical overview of this broad terrain from a multidisciplinary viewpoint. In this attempt we have at times stressed viewpoints other than the purely economic one. We believe that the economist would find it most profitable to learn from the other disciplines where stochastic optimization has been successfully applied. It is in this spirit that we have discussed in some detail the following major areas: A. Portfolio models in finance, B. Differential games under uncertainty, c. Self-tuning regulators, D. Models of renewable resources under uncertainty, and ix x PREFACE E. Nonparametric methods of efficiency measurement. Stochastic processes are now increasingly used in economic models to understand the various adaptive behavior implicit in the formulation of expectation and its application in decision rules which are optimum in some sense.

Essentials of Stochastic Finance
Albert N. Shiryaev 1999

Nonparametric methods of efficiency measurement. Stochastic processes are now increasingly used in economic models to understand the various adaptive behavior implicit in the formulation of expectation and its application in decision rules which are optimum in some sense.

Mathematics for Economics and Finance
Belal Ehsan Baaquie 2020-08-10

This book offers an introductory text on mathematical methods for graduate students of economics and finance-and leading to the more advanced subject of quantum mathematics. The content is divided into five major sections: mathematical methods are covered in the first four sections, and can be taught in one semester. The book begins by focusing on the core subjects of linear algebra and calculus, before moving on to the more advanced topics of probability theory and stochastic calculus. Detailed derivations of the Black-Scholes and Merton equations are provided in order to clarify the mathematical underpinnings of stochastic calculus. Each chapter of the first four sections includes a problem set, chiefly drawn from economics and finance. In turn, section five addresses quantum mathematics. The mathematical topics covered in the first four sections are sufficient for the study of quantum mathematics; Black-Scholes option theory and Merton’s theory of corporate debt are among topics analyzed using quantum mathematics.

State-Space Models
Yong Zeng
2013-08-15

State-space models as an important mathematical tool has been widely used in many different fields. This edited collection explores recent theoretical developments of the models and their applications in economics and finance. The book includes nonlinear and non-Gaussian time series models, regime-switching and hidden Markov models, continuous- or discrete-time state processes, and models of equally-spaced or irregularly-spaced (discrete or continuous) observations. The contributed chapters are divided into four parts. The first part is on Particle Filtering and Parameter Learning in Nonlinear State-Space Models. The second part focuses on the application of Linear State-Space Models in Macroeconomics and Finance. The third part deals with Hidden Markov Models, Regime Switching and Mathematical Finance and the fourth part is on Nonlinear State-Space Models for High Frequency Financial Data. The book will appeal to graduate students and researchers studying state-space modeling in economics, statistics, and mathematics, as well as to finance professionals.

Stochastic Processes with Applications to Finance
Masaaki Kijima 2016-04-19

Financial engineering has been proven to be a useful tool for risk management, but
using the theory in practice requires a thorough understanding of the risks and ethical standards involved. Stochastic Processes with Applications to Finance, Second Edition presents the mathematical theory of financial engineering using only basic mathematical tools. The Interval Market Model in Mathematical Finance Pierre Bernhard 2012-12-14 Toward the late 1990s, several research groups independently began developing new, related theories in mathematical finance. These theories did away with the standard stochastic geometric diffusion “Samuelson” market model (also known as the Black-Scholes model because it is used in that most famous theory), instead opting for models that allowed minimax approaches to complement or replace stochastic methods. Among the most fruitful models were those utilizing game-theoretic tools and the so-called interval market model. Over time, these models have slowly but steadily gained influence in the financial community, providing a useful alternative to classical methods. A self-contained monograph, The Interval Market Model in Mathematical Finance: Game-Theoretic Methods assembles some of the most important results, old and new, in this area of research. Written by seven of the most prominent pioneers of the interval market model and game-theoretic finance, the work provides a detailed account of several closely related modeling techniques for an array of problems in mathematical economics. The book is divided into five parts, which successively address topics including: · probability-free Black-Scholes theory; · fair-price interval of an option; · representation formulas and fast algorithms for option pricing; · rainbow options; · stochastic approach of mathematical finance based upon viability theory. This book provides a welcome addition to the literature, complementing myriad titles on the market that take a classical approach to mathematical finance. It is a worthwhile resource for researchers in applied mathematics and quantitative finance, and has also been written in a manner accessible to financially-inclined readers with a limited technical background. Stochastic Calculus and Differential Equations for Physics and Finance Joseph L. McCauley 2013-02-21 Provides graduate students and practitioners in physics and economics with a better understanding of stochastic processes. Introduction to Stochastic Finance Jia-An Yan 2018-10-10 This book gives a systematic introduction to the basic theory of financial mathematics, with an emphasis on applications of martingale methods in pricing and hedging of contingent claims, interest rate term structure models, and expected utility maximization problems. The general theory of static risk measures, basic concepts and results on markets of semimartingale model, and a numeraire-free and original probability based framework for financial markets are also included. The basic theory of probability and Itô's theory of stochastic analysis, as preliminary knowledge, are presented. Mathematical Methods for Financial Markets Monique Jeanblanc 2009-10-03 Mathematical finance has grown into a huge area of research which requires a large number of sophisticated mathematical tools. This book simultaneously introduces the financial methodology and the relevant mathematical tools in a style that is mathematically rigorous and yet accessible to practitioners and mathematicians alike. It interlaces financial concepts such as arbitrage opportunities, admissible strategies, contingent claims, option pricing and default risk with the mathematical theory of Brownian motion, diffusion processes, and Lévy processes. The first half of the book is devoted to continuous path processes whereas the second half deals with discontinuous processes. The extensive bibliography comprises a wealth of important references and the author index enables readers quickly to locate where the reference is cited within the book, making this volume an invaluable tool both for
students and for those at the forefront of research and practice. **Agent-Based Methods in Economics and Finance** Francesco Luna 2002 This volume on financial and economic simulations in Swarm marks the continued progress by a group of researchers to incorporate agent-based computer models as an important tool within their discipline. Swarm promotes agent-based computer models as a tool for the study of complex systems. A common "language" is leading to the growth of user communities in specific areas of application. Furthermore, by providing an organizing framework to guide the development of more problem-specific structures, and by dealing with a whole range of issues that affect their fundamental correctness and their ability to be developed and reused, Swarm has sought to make the use of agent-based models a legitimate tool of scientific investigation that also meets the practical needs of investigators within a community. Swarm's principal foundation is an object-oriented representation of active agents interacting among themselves and with their environment. To this base layer it adds its own structures to drive, record and portrait the events that occur across this world. The specific contents of any world, however, are up to the experimenter to provide, either by building them from scratch or by tapping previous contributions. This book is notable in assembling a rich array of such contributions, which are significant in their own right, but which can also be mined to extract the reusable elements in their respective areas of finance and economics. It also presents three interesting software additions with tutorials in the form of simple financial and economic applications. A Swarm meta-language closer to a natural language', the use of internet-augmented Swarm for experimental economics, and a Swarm visual builder will meet the challenges launched by other agent-based modelling competitors. The Swarm community at large can benefit greatly from the lead that the growing field of computational economics is taking to address its own needs, as represented by th **Stochastic Processes** Wolfgang Paul 2013-07-11 This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent-based modeling approaches is given. **Stochastic Dominance and Applications to Finance, Risk and Economics** Songsak Sriboonchita 2009-10-19 Drawing from many sources in the literature, Stochastic Dominance and Applications to Finance, Risk and Economics illustrates how stochastic dominance (SD) can be used as a method for risk assessment in decision making. It provides basic background on SD for various areas of applications. Useful Concepts and Techniques for Economics Applications The **Option Theory with Stochastic Analysis** Fred Espen Benth 2012-12-06 This is a very basic and accessible introduction to option pricing, invoking a minimum of stochastic analysis and requiring only basic mathematical skills. It covers the theory essential to the statistical modeling of stocks, pricing of derivatives with martingale theory, and computational finance including both finite-difference and Monte Carlo methods.
Carlo methods.

Stochastic Modeling in Economics and Finance Jitka Dupacova 2006-04-18 In Part I, the fundamentals of financial thinking and elementary mathematical methods of finance are presented. The method of presentation is simple enough to bridge the elements of financial arithmetic and complex models of financial math developed in the later parts. It covers characteristics of cash flows, yield curves, and valuation of securities. Part II is devoted to the allocation of funds and risk management: classics (Markowitz theory of portfolio), capital asset pricing model, arbitrage pricing theory, asset & liability management, value at risk. The method explanation takes into account the computational aspects. Part III explains modeling aspects of multistage stochastic programming on a relatively accessible level. It includes a survey of existing software, links to parametric, multiobjective and dynamic programming, and to probability and statistics. It focuses on scenario-based problems with the problems of scenario generation and output analysis discussed in detail and illustrated within a case study.

Stochastic Calculus and Financial Applications J. Michael Steele 2012-12-06 Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH

Stochastic Methods in Economics and Finance C.J. Bliss 1984

Reconstructing Macroeconomics Masanao Aoki 2011-08-29 In this 2007 book, the authors reconceptualize existing macroeconomics by treating equilibria as statistical distributions, not as fixed points.

Financial Economics, Risk and Information Marcelo Bianconi 2003

"This book presents a balanced blend of pure finance and contract theory in the presence of risk, alternative forms of information structures, and static and dynamic frameworks. In particular, it provides an introduction to the use of stochastic methods in financial economics and finance. The following topics are covered: financial risk and asset pricing and asset returns under alternative contractual arrangements, portfolio choice, individual behavior towards risk, general equilibrium under uncertainty in discrete and continuous time settings, indivisibilities and nonconvexities in a general equilibrium context, contract theory, mechanism design and principal-agent relationships in partial and general equilibrium contexts, credit markets, and option pricing."